
MongoDB
What is it

MongoDB (from humongous) is a scalable, high-performance, open source,
schema-free, document-oriented database.
-- mongodb.org

Thinking in documents
When building applications and data, it's about more than the DB.

Easily understood structures

Harmonized with software and real world use

Planning for the future

Ideas behind MongoDB
RDBMS's are sometimes really awkward to fit to some of today's problems.

static, uniform scalar data

rectangles

low-level, leverage/match the hardware design AND programming languages of the
day

scaling RDB can be a challenge

difficult to make an RDB an "on demand" service

MongoDB's focus is on performance and flexibility and scaling

flexible rich shapes of data

easily match objects to database entries

higher level, business entity representation

non-platform specific

more often via dynamic programming languages like python, ruby,
java/javascript/node.js

returning cursors (Python) or maps (Java)

while retaining many of the more useful RDB ideas

indexing, distributed, etc.

It is a document-oriented database

EVERYTHING is a document: { ... }

Data models, data stored and schemas are all described in Json

Flexible format

you can design data models supporting common data access patterns

e.g., you can design the data driving a website so that the most frequently
viewed pages require a simple query to the database.

HOWEVER ...
No referential integrity

No focus on normalization can mean updating something in many places instead
of one

Lack of predefined schema is a double- edged sword

You must have a model in your app

Objects within a collection can be completely inconsistent in their fields

JSON and BSON

Everything is expressed in BSON ("binary" JSON)

MongoDB understands JSON natively

From MongoDB Documentation:

JavaScript Object Notation (JSON) is an open, human and machine-readable
standard that facilitates data interchange, and along with XML is the main
format for data interchange used on the modern web. JSON supports all the
basic data types you'd expect: numbers, strings, and boolean values, as well
as arrays and hashes.

Document databases such as MongoDB use JSON documents in order to store
records, just as tables and rows store records in a relational database.

A JSON database returns query results that can be easily parsed, with little
or no transformation, directly by JavaScript and most popular programming
languages – reducing the amount of logic you need to build into your
application layer.

MongoDB represents JSON documents in binary-encoded format called BSON behind
the scenes.
BSON extends the JSON model
to provide additional data types, ordered fields, and to be efficient for
encoding and decoding within different languages.

For example if we were representing blog articles...

https://docs.mongodb.com/manual/
https://www.mongodb.com/docs/manual/reference/bson-types/

For example if we were representing blog articles...

To do the same thing with a relational database would require several joins
across different relational tables.

And because Mongo DB Doesn't have to do these joins, it can be more easily
distributed across several databases as shards and applications don't have to
know.

Moving from RDB to MongoDB
SLIDES 26-32

value of any field is a
BSON datatype.

for MongoDB, the { "key":"value", ... } is a document

Example in javascript (which also knows JSON):

{
 "_id": "No-Sushi-Mondays",
 "title": "Why I never eat sushi on Mondays",
 "date": "2017-02-13T21:27:22.104Z",
 "author": {
 "name": "Tony Stark",
 "title": "CEO",
 "company": "Stark Industries"
 },
 "text": "Do you ever wonder just how fresh fish could be when ...",
 "tags": ["sushi", "Mondays", "nausea", "Vibrio parahaemolyticus"],
 "comments": [
 {
 "name": "FishMonger Phil",
 "comment": "What do you know about ..."
 },
 {
 "name": "Dr.Nick",
 "comment": "What's the big deal, a little ..."
 }
]
}

https://docs.mongodb.com/manual/reference/bson-types/

_id holds an ObjectId.

name holds an embedded document that contains the fields first and last.

birth and death hold values of the Date type.

contribs holds an array of strings.

views holds a value of the NumberLong type.

Naming guidelines
Use camelCase for names

The field name _id is reserved for use as a primary key; its value must be
unique in the collection, is immutable, and may be of any type other than an
array.

The field names cannot start with the dollar sign ($) character.

The field names cannot contain the dot (.) character.

The field names cannot contain the null character.

SLIDES 33-57

var mydoc = {
 _id: ObjectId("5099803df3f4948bd2f98391"),
 name: { first: "Alan", last: "Turing" },
 birth: new Date('Jun 23, 1912'),
 death: new Date('Jun 07, 1954'),
 contribs: ["Turing machine", "Turing test", "Turingery"],
 views : NumberLong(1250327)
 }
db.posts.insertOne(mydoc);
var c = {author: “eliot”, date: new Date(), text: “great post!”}
db.posts.update({_id: post._id}, {$push: {comments: c}})

	MongoDB
	What is it
	Thinking in documents
	Ideas behind MongoDB
	It is a document-oriented database
	HOWEVER ...
	JSON and BSON

	Moving from RDB to MongoDB
	Naming guidelines

